Tips for Implementing the Common Core State Standards for Mathematics

Bradford R. Findell, PhD

December 12, 2012

North Olmsted City Schools

Essential Shifts for the CCSS for Mathematics

Instructional Shifts

- Focus strongly where the Standards focus
- Coherence: think across grades, and link to major topics within grades
- Rigor: require conceptual understanding, procedural skill and fluency, and application with equal intensity

Assessment Shifts: PARCC Task Types

TYPE I: TASKS ASSESSING CONCEPTS, SKILLS AND PROCEDURES	TYPE II: TASKS ASSESSING EXPRESSING MATHEMATICAL REASONING	TYPE III: TASKS ASSESSING MODELING / APPLICATIONS
 A balance of conceptual understanding, fluency, and application 	justifications, critique of reasoning, precision in	 Modeling and application in a real- world context or
 Any or all mathematical practice standards 	mathematical statements	scenarioMP.4 and other
 Machine scorable, innovative, computer- 	 MP.3, MP.6 and other mathematical practice 	mathematical practice standards
based formatsIncluded on the End of Year and Performance	standardsA mix of innovative, machine scored and	 A mix of innovative, machine scored and hand scored responses
Based Assessment	hand scored responsesIncluded on the Performance Based	 Included on the Performance Based Assessment

Assessment

CCSS Mathematical Practices

- 1. Make sense of problems and persevere in solving them
- 2. Reason abstractly and quantitatively
- Construct viable arguments and critique the reasoning of others
- 4. Model with mathematics
- 5. Use appropriate tools strategically
- 6. Attend to precision
- 7. Look for and make use of structure
- 8. Look for and express regularity in repeated reasoning

Implications

- The PARCC assessments take seriously the Standards for Mathematical Practices
- Success on these new assessments will require shifts in instruction, in classroom assessment, and in the nature of the content:
 - Correct answers are insufficient
 - Explanation and reasoning are required
 - Modeling and application are crucial

K-8 Content Shifts

- Primary focus on number in grades K-5
- Fluency with standard algorithms, supported by strategies based in place value
- Fractions as numbers on the number line, built from unit fractions
 - Unit fractions provide meaning for fraction arithmetic
- Much statistics in grade 6-8
- Much algebra and geometry in grades 7-8
 - Fractions ⇒ Proportional reasoning ⇒ Linear functions

High School Content Shifts

- Number and quantity
 - Number systems, attention to units
- Modeling
 - Threaded throughout the standards
- Geometry
 - Proof for all, based on transformations
- Algebra and functions
 - Organized by mathematical practices
- Statistics and probability
 - Inference for all, based on simulation

Programmatic Shifts

- The CCSSM represent significant curricular acceleration in grades K-8
 - Much Algebra 1, Geometry, and Statistics are in the middle grades
 - Many "accelerated" programs will no longer be ahead
 - The CCSS for Grade 8 is a reasonable, internationally benchmarked response to "Algebra for all" in grade 8
- Accelerating large percentages of students much beyond the CCSS for K-8 is probably unwise
- The CCSSM for high school include much advanced content and much new content for all students
 - Most students will need three years in high school to complete CCSS
- So we need to rethink mathematics, grades 6-12

Math Programs for All Students

- Main pathway completing the CCSS in grade 11
 - Rather than Prealgebra in grade 9, provide support for all students to reach these standards
 - Provide alternatives to Precalculus for seniors
- Alternative pathway completing the CCSS in grade 10, allowing for AP Calculus in grade 12
 - Determine where "compacting" should happen
- Flexibility for the small numbers of students who are eager for still more mathematics
 - Align with gifted education policies
 - Expect PSEO during senior year

Implementation Resources and Suggestions

Implementation Resources

- The Mathematics Frameworks from the Partnership for Readiness for College and Careers (<u>PARCC</u>)
- The draft Mathematics Content Specifications from the Smarter Balanced Assessment Consortium (SBAC)
- The Mathematics Assessment Project (MAP)
- The Illustrative Mathematics Project (<u>IMP</u>)
- Bill McCallum's Common Core Tools <u>blog</u>
 - Progressions documents
- Common Core videos from the **Hunt Institute**
- Phil Daro's SERP Institute <u>videos</u>
- Inside Mathematics <u>website</u>

Tips for Implementation

- Get to know the CCSS
 - Use the critical areas of focus
 - Take a progressions view
- 2. Lead with the mathematical practices
 - With the content you are teaching now
- 3. Work collectively
 - You do not need to invent it all yourself
- 4. Involve administrators and parents
- 5. Take some transitional steps
 - Changes you can make soon

Tips for Implementation

- 6. Build support structures for students who are behind
- 7. Design programs for *all students*, driven by progressions, not course names
- 8. Require focus and coherence in district initiatives and professional development offerings
- Document your implementation
 - Treat your implementation work as action research
- 10. Take a deep breath ... and prepare for a long haul
 - Improving instruction and building new systems takes time